

Assessment of Substitution in the Second Pharmacophore of Dmt-Tic Analogues

Vincenzo Santagada,^a Gianfranco Balboni,^b Giuseppe Caliendo,^a Remo Guerrini,^c Severo Salvadori,^c Clementina Bianchi,^d Sharon D. Bryant^e and Lawrence H. Lazarus^{e,*}

^aMedicinal Chemistry and Toxicology, University of Naples, I-80134 Naples, Italy

^bDepartment of Toxicology, University of Cagliari, I-09126 Cagliari, Italy

^cDepartment of Pharmaceutical Sciences and Biotechnology Center, University of Ferrara, I-4100 Ferrara, Italy

^dInstitute of Pharmacology, University of Ferrara, I-44100 Ferrara, Italy

^ePeptide Neurochemistry, LCBRA, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27707, USA

Received 3 August 2000; accepted 28 September 2000

Abstract—The Dmt-Tic pharmacophore exhibits potent δ-opioid receptor antagonism. Analogues with substitutions in the second pharmacophore with (1, 1') or without a COOH function (2-9) were synthesized: several had high δ affinity (1', 2, 7, and 9), but exhibited low to non-selectivity toward μ receptors similar to H-Dmt-Tic-amide and H-Dmt-Tic-ol. Functional bioactivity indicated high δ antagonism $(pA_2, 7.4-7.9)$ (1', 2, and 9) and modest μ agonism, pEC₅₀ (6.1-6.3) (1', 2, 8, and 9), but with E_{max} values analogous to dermorphin. These Dmt-Tic analogues with mixed δ antagonist/μ agonist properties would appear to be better candidates as analgesics than pure μ agonists. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

The development of the first dipeptide δ antagonist lacking Phe¹ arose from the δ-opioid receptor antagonists of Tyr-Tic-Phe-(Phe) series.² Substitution of Dmt for Tyr further produced dipeptides with orders of magnitude higher receptor binding affinity, selectivity and δ antagonism.³ Additional modification of this unique message domain by N-alkylation enhanced in vitro δ antagonism by 20-fold.⁴ On the other hand, modification of the COOH function and concomitant elimination of the negative charge by amidation as in H-Dmt-Tic-amide³ or reduction to an alcohol in H-Dmt-Tic-ol,³ reduced affinity and selectivity for the δ receptor while concomitantly increasing it for the μ-opioid receptor. However, the C-terminal alcoholic function of H-Dmt-Tic-ol seemed to be better tolerated in terms of δ interaction and enhanced u receptor binding than the amide function.³ Other substituents at the C-terminus with higher octanol:water coefficients dramatically increased interaction with the µ site to yield bifunctional ligands with either δ antagonism/ μ agonism or δ antagonism/µ antagonism bioactivities. Those data demonstrated that strong hydrophobic or lipophilic groups at the C-

The requirement for an intact heterocylic ring of Tic for antagonism was delineated through substitutions by benzimidazole-, pyridoindole-, or sprioinden-derivatives, while substitutions at positions 5, 6, and 7 in the Tic pharmacophore of H-Dmt-Tic-OH analogues exhibited altered receptor binding profiles. This communication focused on modification at position 6 or 7 of Tic in the Dmt-Tic pharmacophore with or without a COOH function as analogues of H-Dmt-Tic-amide and H-Dmt-Tic-ol, and documents the effect of electronic perturbation on δ antagonist and μ agonist properties.

Chemistry

Dmt was synthesized according to published methods.⁸ Briefly, the peptide antagonists reported in Table 1 (see Fig. 1) were prepared by acylation of H-(*R*,*S*)-(6-F)-Tic-OMe (1, 1') or substituted tetrahydroisoquinolines 2–9 with Boc-Dmt-OH via WSC/HOBt as a standard procedure and removing the Boc group with TFA to give the final compounds.⁵ H-(*R*,*S*)-(6-F)-Tic-OH was obtained

terminus of Dmt-Tic peptide antagonists interacted with a putative region in the receptor that determines $\boldsymbol{\mu}$ activity. 5

^{*}Corresponding author. Tel.: +1-919-541-3238; fax: +1-919-541-0626; e-mail: lazarus@niehs.nih.gov

Table 1. Receptor binding affinities of Dmt-Tic dipeptide analog	Table 1.	Receptor b	oinding affinities	of Dmt-Tic o	lipeptide analogue
---	----------	------------	--------------------	--------------	--------------------

Peptide	R	\mathbb{R}^1	\mathbb{R}^2	$K_{\rm i}\delta$	$K_{ m i}\mu$	$K_{\rm i}\mu/K_{\rm i}\delta$
H-Dmt-Tic-amide	CONH ₂	Н	Н	1.22±0.09 (6)	276.8±27 (3)	227 ^b
H-Dmt-Tic-ol	CH ₂ OH	Н	Н	$0.44\pm0.14(6)$	$151.4\pm16.3(3)$	17 ^b
1	COOH	F	Н	65.3 ± 13 (4)	43.0 ± 6.4 (4)	0.7
1'	COOH	F	Н	$0.32\pm0.02(3)$	$195.3\pm26~(4)$	610
2	Н	Н	Н	$0.97\pm0.3(4)$	$4.60\pm0.4(3)$	5
3	Н	Н	NO_2	$101.2\pm18(5)$	$33.8\pm4(3)$	0.33
4	Н	Н	NH_2	$3.94\pm0.3(3)$	$12.5\pm0.3(4)$	3
5	Н	Н	OCH_3	$3.79\pm0.3(4)$	$18.1\pm1.1(3)$	5
6	H	Н	OH	$33.9\pm9.9(4)$	$6.03\pm1.0(3)$	0.2
7	Н	Н	Br	$1.04\pm0.2~(4)$	$18.2\pm2.1\ (3)$	18
8	Н	Н	F	$4.09\pm0.08(3)$	$8.98\pm2.7(4)$	2
9	CH ₂ OCH ₂ -Ph	Н	Н	$0.77\pm0.23(5)$	$6.39\pm1.6(5)$	8

^aAbbreviations: Tic, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid; Dmt, 2',6'-dimethyl-L-tyrosine; WSC, water soluble carbodiimide; HOBt, hydroxybenzotriazole; TFA, trifluoroacetic acid. The ratio $K_i\mu/K_i\delta$ defines the binding selectivity between δ and μ receptor sites. The numbers in parentheses represent independent binding assays.

^bData taken from Salvadori et al.³

Figure 1. Schematic diagram of the Dmt-Tic pharmacophore with R, R^1 , and R^2 substitution sites. See Tables 1 and 2 for details.

from H-(R,S)-(3-F)-Phe-OH by treatment with formaldehyde and concentrated HCl according to procedures in the literature,9 esterified at the COOH function with CH₃OH and SOCl₂, and used in the acylation step as H-(R,S)-(6-F)-Tic-OMe. Saponification of the methyl ester followed by removal of the N-protecting group of Boc-Dmt-(R,S)-(6-F)-Tic-OMe gave the final diastereoisomeric mixture 1 and 1'. These were separated by preparative reverse-phase HPLC conducted with a Waters Delta Prep 4000 (30×3 cm; 15 mm) column with peptides eluted in a gradient of 0-60% B in 25 min at a flow rate of 40 mL/min. The following mobile phases were used: solvent A (10% acetonitrile in 0.1% TFA, v/v) and solvent B (60% acetonitrile in 0.1% TFA, v/v). Substituted 1,2,3,4-tetrahydroisoquinolines as intermediates in the synthesis of 2-9 were prepared according to published methods: $R^2 = NO_2$ (3) and NH_2 (4);¹⁰ $R^2 = OCH_3$ (5), OH (6) and F (8); $R^2 = Br$ (7); $R^2 = Br$ (7); and when R = hydroxymethyl (9), Tic-ol was esterified with NaH/benzyl bromide as reported.¹³ All compounds were purified by preparative HPLC using the same conditions as reported above.

Biological

Receptor binding affinities of the compounds were conducted as previously reported. $^{3-5,14-16}$ (Table 1). The determination of antagonist and agonist bioactivity utilized mouse vas deferens and guinea-pig ileum for δ and μ activities, respectively, as reported elsewhere. 14 The measurements for δ antagonism or μ agonism were compared against deltorphin C, a δ agonist 17 and der-

morphin, a μ agonist, ¹⁸ respectively. For comparison, the p A_2 values of the δ antagonists H-Dmt-Tic-amide and H-Dmt-Tic-ol, ³ and naloxone (μ) were included as controls (Table 2).

Results and Discussion

The competition binding assays for the compounds in Figure 1 are detailed in Table 1. Deletion of the COOH function in compound 2 had a similar δ binding profile to H-Dmt-Tic-amide and H-Dmt-Tic-ol, but with 30- to 60-fold greater interaction for μ receptors. The removal of the COOH function precipitates profound changes at the μ site which results in the loss of δ selectivity as observed in studies with deltorphins. Thus, we further explored the effect of substitutions in the second pharmacophore (Tic) of our template with and without a COOH function.

Inclusion of the halogen F at position 6 of Tic (R^1 , 1, 1') was tested as a means to increase the hydrophobicity and H bonding capacity inside the ligand-binding domain. The results revealed a different binding pattern than the control dipeptides which depended on the chirality of Tic (Table 1). In fact, the second HPLC peak 1' showed high δ affinity comparable to the reference compounds, while its diastereoisomer 1 might suggest a possible candidate peptide for future study as a potential μ ligand due to the shift in the μ binding pattern and selectivity. Those data confirmed the hypothesis that while Tyr/Dmt-Tic represents the δ -opioid message domain, 1,3 Tyr/Dmt-D-Tic better defines a μ -opioid message domain. 3,19

Deletion of the COOH function (R) in combination with the substitution of different chemical functions (2–8) at position 7 (R²) of the 1,2,3,4-tetrahydroisoquinoline aromatic nucleus decreased affinity to the δ receptor from approximately 3- (4, 5, and 8) to 30- (6) and 100-fold (3), and maintained μ affinity in the low nM range (Table 1). Thus, none of the substitutions indicated receptor preference: NO₂ (3) and OH (5) were especially not well tolerated in binding to the δ receptor. An aromatic ring (9) was added to the C-terminus of H-Dmt-

Table 2. Bioactivity of Dmt-Tic dipeptide analogues^a

	R	\mathbb{R}^1		MVD (δ)			GPI (μ)		
Compound			\mathbb{R}^2	Agonist		Antagonist	Agonist		Antagonist
				pEC ₅₀	E _{max} (%)	pA_2	pEC ₅₀	E _{max} (%)	pA_2
H-Dmt-Tic-amide	CONH ₂	Н	Н	i	_	7.2 ^b	< 5	_	
H-Dmt-Tic-ol	CH ₂ OH	Н	Н	i	_	$7.0^{\rm b}$	< 5	_	_
1'	COOH	F	Н	i	_	7.45	6.09	83±4	ND
2	H	Н	Н	i	_	7.41	6.31	$52\pm13^{\dagger}$	ND
8	H	Н	F	i	_	6.21	6.2	73 ± 11	ND
9	CH2OCH2-Ph	Н	Н	i	_	7.87	6.28	85±6	ND
Dermorphin					_	_	8.8	91 ± 2	_
Deltorphin C				9.48	91 ± 2	_	_	_	_
Naloxone				_	_	_	_	_	8.73

^aData are the means \pm SEM of at least three independent experiments. Definitions: MVD, mouse vas deferens; GPI, guinea-pig ileum; i represents inactivity up to 1 μM; ND, not determined; pEC₅₀ is the negative log of the molar concentration of an agonist to produce 50% of the maximum effect; E_{max} (%) is the maximal effect induced by an agonist expressed as percent inhibition of the electrically induced twitches. Antagonism is defined as the pA₂, which is the negative log of the molar concentration of an agonist (deltorphin C)¹⁷ needed to elicit the original submaximal response. These values have been obtained by testing the antagonist at 1 μM and using the equation, pA₂=log[C-1]/[antagonist], where C=concentration.

Tic-ol by alkylation with a benzyl group (Ph). Although 9 demonstrated high δ affinity comparable to H-Dmt-Tic-ol, μ affinity rose 23-fold. These data further verify that a free carboxyl group is not required for binding to δ receptors¹⁷ and the aromatic ring of the CH₂OCH₂Ph group (9) apparently (and partially) occupies a site normally available to μ agonists,⁵ since the compound still exhibited δ antagonism (Table 2).

Pharmacological activity in vitro with MVD and GPI was tested on selected compounds in order to evaluate agonist and antagonist activity at the δ and μ receptors as shown in Table 2. All analogues assayed (1', 2, 8, and 9) exhibited δ antagonism with a p A_2 ranging from 6.2–7.9 that brackets the activity of the standard dipeptide antagonists (H-Dmt-Tic-amide and H-Dmt-Tic-ol). In terms of biological activity on GPI, the compounds are all agonists with a pEC $_{50}$ ranging from 6.1–6.3 with an E_{max} that was comparable to the μ opioid dermorphin (Table 2). Thus, these analogues possess mixed δ antagonist/ μ agonist bioactivity and would appear to be better candidates as analgesics with a low propensity to produce tolerance and dependence than pure μ agonists, such as morphine. 20

Conclusions

We demonstrated that modification of the second pharmacophore in Dmt-Tic yielded analogues with δ affinity and δ antagonism in spite of the lack of COOH function. However, receptor selectivity was dramatically absent in keeping with previous data that indicated the necessity of a negative charge to discriminate between δ and μ receptors. Furthermore, while the electronic alterations to the aromatic nucleus of Tic enhanced μ affinity, δ antagonism remained comparable to the standard peptides, H-Dmt-Tic-amide and H-Dmt-Tic-ol. The addition of a benzyl ether in lieu of the alcohol function in 9 gave similar results to position 6 or 7 substitutions on Tic in Dmt-Tic analogues. The data are especially critical to

the future design of Dmt-Tic analogues which exhibit antagonist/agonist activities; those studies are currently in progress.

References and Notes

- 1. Temussi, P. A.; Salvadori, S.; Amodeo, P.; Bianchi, C.; Guerrini, R.; Tomatis, R.; Lazarus, L. H.; Tancredi, T. *Biochem. Biophys. Res. Commun.* **1994**, *198*, 933.
- 2. Schiller, P. W.; Nguyen, T. M.-D.; Weltrowska, G.; Wilkes, B. C.; Marsden, J.; Lemieux, C.; Chung, N. N. *Proc. Natl. Acad. Sci. U.S.A.* **1992**, *89*, 11871.
- 3. Salvadori, S.; Attila, M.; Balboni, G.; Bianchi, C.; Bryant, S. D.; Crescenzi, O.; Guerrini, R.; Picone, D.; Tancredi, T.; Temussi, P. A.; Lazarus, L. H. *Mol. Med.* **1995**, *1*, 678.
- 4. Salvadori, S.; Balboni, G.; Guerrini, R.; Tomatis, R.; Bianchi, C.; Bryant, S. D.; Cooper, P. S.; Lazarus, L. H. J. Med. Chem. 1997, 40, 3100.
- 5. Salvadori, S.; Guerrini, R.; Balboni, G.; Bianchi, C.; Bryant, S. D.; Cooper, P. S.; Lazarus, L. H. *J. Med. Chem.* **1999**, *42*, 5010.
- 6. Balboni, G.; Salvadori, S.; Guerrini, R.; Bianchi, C.; Santagada, V.; Calliendo, G.; Bryant, S. D.; Lazarus, L. H. *Peptides* **2000**, *21*, in press.
- 7. Page, D.; McClory, A.; Mischki, T.; Schmidt, R.; Butterworth, J.; St-Onge, S.; Labarre, M.; Payza, K.; Brown, W. Bioorg. Med. Chem. Lett. 2000, 10, 167.
- 8. Dygos, J. H.; Yonan, E. E.; Scaros, M. G.; Goodmonson, O. J.; Getman, D. P.; Periana, R. A.; Beck, G. R. *Synthesis* **1992**, *8*, 741.
- 9. Stanton, J. L.; Gruenfeld, N.; Babiarz, J. E.; Ackerman, M. H.; Friedmann, R. C.; Yuan, A. M.; Macchia, W. J. Med. Chem. 1983, 26, 1267.
- 10. Grunewald, G. L.; Dahanukar, V. H.; Caldwell, T. M.; Criscione, K. R. *J. Med. Chem.* **1997**, *40*, 3997.
- 11. Sall, D. J.; Grunewald, G. L. J. Med. Chem. 1987, 30, 2208.
- 12. Grunewald, G. L.; Dahanukar, V. H.; Jalluri, R. K.; Criscione, K. R. *J. Med. Chem.* **1999**, *42*, 118.
- 13. Grunewald, G. L.; Dahanukar, V. H.; Teoh, B.; Criscione, K. R. *J. Med. Chem.* **1999**, *42*, 1982.
- 14. Salvadori, S.; Bianchi, C.; Lazarus, L. H.; Scaranari, V.; Attila, M.; Tomatis, R. J. Med. Chem. 1992, 35, 4651.

^bData taken from Salvadori et al.³

- 15. Salvadori, S.; Bryant, S. D.; Bianchi, C.; Balboni, G.; Scaranari, V.; Attila, M.; Lazarus, L. H. *J. Med. Chem.* **1993**, 36–3748
- Salvadori, S.; Bryant, S. D.; Temussi, P. A.; Bundy, D. M.; Attila, M.; Tomatis, R.; Lazarus, L. H. Eur. J. Pharm. 1993, 230, 357.
- 17. Lazarus, L. H.; Bryant, S. D.; Cooper, P. S.; Salvadori, S. *Prog. Neurobiol.* **1999**, *57*, 377.
- 18. Melchiorri, P.; Negri, L. Gen. Pharmac. 1996, 27, 1099.
- 19. Lazarus, L. H.; Bryant, S. D.; Cooper, P. S.; Guerrini, R.; Balboni, G.; Salvadori, S. *Drug Disc. Today* **1998**, *3*, 284.
- 20. Sawynok, J. Can. J. Physiol. Pharmacol. 1986, 64, 1.